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Abstract. Although many sophisticated EEG analysis methods have been devel-
oped, they are rarely used in clinical practice. Individual differences in brain bi-
oelectrical activity are quite substantial, therefore simple methods that can pro-
vide stable results reflecting the basic characteristics of individual neurodynam-
ics are very important. Here, we explore the potential for brain disorder classifi-
cation based on patterns extracted from the asymptotic spatial power distribu-
tions, and compare it with 4-20 microstates, providing information about the dy-
namics of clustered global power patterns. Applied to the 16-channel EEG data
such methods gave discrimination between adolescent schizophrenia patients and
a healthy control group at the level of 86-100%.

Keywords: EEG, power spectra, STFT, microstates, neurodynamics, schizo-
phrenia diagnostics, machine learning.

1 Introduction

Bioelectrical brain activity is frequently measured using electroencephalography
(EEG) or magnetoencephalography (MEG). Such signals may have a high sampling
rate, with temporal resolution below a millisecond. On the other hand, functional mag-
netic resonance (fMRI) measuring blood-oxygen-level dependent (BOLD) hemody-
namic signals provides information about metabolic demands with a much lower tem-
poral resolution of the order of one second. Both methods are used to diagnose mental
disorders, neurofeedback, and many other applications.

Although many sophisticated approaches to EEG analysis have been developed, they
are rarely used in clinical practice. Bioelectrical brain activity is non-stationary, even
during short periods. Individual differences are quite large. Neurodynamics, especially
in the resting state, strongly depends on hundreds of confounds [1]. Methods tested on
a small number of samples give good results for favorably tuned parameters but in real
life do not generalize well. Good biomarkers for objective diagnosis of brain disorders
are still unknown [2]. Neural and genetic fingerprints of brain disorders may belong to
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large clusters, reflecting the fundamental character of individual genetic or neurody-
namic processes. Still, rare cases may be impossible to diagnose without similar pat-
terns in the dataset used for training. Methods that reach 100% accuracy on small da-
tasets have little chance of being useful.

EEG recordings involve a spatial distribution of power and temporal dynamics. The
human brain contains about 2-4 million cortical columns, each containing tens of thou-
sands of neurons, generating oscillations with frequencies reaching hundreds of hertz.
EEG measurements are characterized by a spatial resolution of one centimeter and are
usually analyzed in the 0-50 Hz range (intracranial iEEG may include 500 Hz ripples).
The activity of large-scale neural networks can be used for biometric identification [3].
Specific patterns (fingerprints) of brain activity have diagnostic value. EEG recordings
may detect the activity of more than ten large-scale networks linked to specific infor-
mation processing (visual, auditory, sensorimotor, salience, dorsal and ventral atten-
tion, or default mode). This requires co-registration with the fMRI signal, which is tech-
nically very difficult [4].

In this paper, we have used a data-driven phenomenology that reflects the actual
physiological processes. First, the limits of both spatial averaging of power in the nar-
row frequency bands and temporal characterization of brain processes using a large
number of microstates, are explored. Tests were made on a typical, small EEG dataset
of 45 schizophrenic adolescents [5]. Many papers were tested on even smaller EEG
data, of 14 schizophrenia cases. Second, we investigate why several papers (see [6] and
the review in [15]) can get 100% accuracy on such datasets. Classification may be suc-
cessful if cases of similar structure are in the training set. Perfect classification accuracy
is reached when features are selected on the whole data, before training a classifier
(which is a common practice). Feature selection on the cross-validation training parti-
tion may lead to errors, identifying rare cases that should be inspected separately.

The methods applied in our study are described in the next section, followed by the
description of the real data used for testing in the third section, and the results obtained
in section four; the paper ends with the final discussion.

2 Methods

2.1 Microstates

EEG microstate analysis is a very popular method that may be used to generate
features useful for classification. Global field potential (GFP) is calculated as the vari-
ance of potential Vj(t) on the scalp:

13 —\2
GFP(t) =, [= > (Vi(t)-V)
N3
Local maxima of GFP represent quasi-stable attractor states, transient activity patterns
across all electrodes lasting from milliseconds to seconds. Such metastable field poten-
tial patterns are clustered for groups of subjects to identify classes of microstate



topologies. Two clusterization methods are most frequently used: the k-means approach
and the “topographic atomize and agglomerate hierarchical clustering” (TAAHC, [7]).
The whole time series is divided into windows assigned to a given microstate class
based on the spatial similarity metric between each consecutive EEG sample and each
microstate class. Initially, only four stable microstates were distinguished [8], and
rarely more than ten classes were used for analysis.

Despite its great popularity, the microstate approach is burdened by some serious
methodological limitations [9], drastically oversimplifying complex EEG signals. As-
cribing various brain states to only a few clusters makes using statistical methods and
symbolic dynamics techniques feasible, but a lot of information is lost. EEG oscillations
show complex dynamics in different frequency bands between GFP peaks. Spatial
power distribution patterns of microstates are too simple to accurately reflect the activ-
ity of large-scale brain networks.

We have performed MS analysis using the ‘global maps strategy' [8-10] where one
common set of k global maps is identified for all recordings, producing a set of common
prototypes for both study groups. The analysis was carried out using freely available
toolboxes for the MATLAB environment - the Microstate Toolbox EEGLAB plug-in
[7] and the +microstate stand-alone package [11]. The initial steps included re-refer-
encing to average reference and aggregating all EEG data fragments without normali-
zation by average channel standard deviation. For each participant 1000 randomly se-
lected EEG maps of the highest GFP at a minimum map distance of 10 ms were se-
lected, discarding maps with GFP values exceeding one standard deviation of all maps’
GFPs. Following normalization across the whole dataset, the selected maps were sub-
jected to clustering using modified k-means (50 repetitions, 1000 maximum iterations,
10 threshold, cross-validation criterion measure of fitness). Maps were clustered se-
lecting 4 to 20 microstate classes, and sorted by the global explained variance (GEV).
Even number of microstate prototypes was used for microstate segmentation and back-
fitting to the data; sample maps were labeled based on the maximum similarity to the
prototypes assessed with the global map dissimilarity (GMD) measure. The resulting
microstate label syntax was subjected to temporal smoothing by rejecting small frag-
ments below 30 ms. The following microstate statistics were calculated for each partic-
ipant and used as features for classification: occurrence, duration, coverage, GEV,
global field potential, mean spatial correlation, and the transition probabilities between
microstate classes.

2.2 Spatial distribution of power

Our ToFFi toolbox for frequency-based fingerprinting of brain signals allows for
the identification of specific frequencies (“fingerprints”) arising in local brain regions,
depending on the subnetwork that engages it in its activity [12]. Asymptotic average
power distribution maps are more complex than MS maps and are good candidates for
prototype states characterizing brain neurodynamics. To create such maps, we calcu-
lated short-time Fourier spectra (STFT) in 1-second sliding time windows. The STFT
spectra were generated in windows starting in consecutive EEG samples, providing cu-
mulative and average power estimations at discrete frequencies f for each electrode on



the scalp. Given a raw EEG data matrix Ux= (uik)=(uk(ti)), where the index i =1..N enu-
merates time-series samples and index k=1.. N refers to electrode number (N data
streams, input channels), the algorithm is summarized as follows:

For each subject, given EEG data matrix Uk= (Uix)

Segment the data into time windows with = samples, wk(ti) = [Uik, Uik+].

For each time window i=1.. N-t calculate STFT power spectra Sk(t;,f).

Sum all Sk(t,f) over time windows to get local cumulative power Sk(f)
in channel k at frequency f.

e Calculate the average power Rk(f) = Sk(f)/(N-z) in each channel.

e Sum Rk(f) over selected frequency ranges to estimate power in each band.

If the sampling frequency is high, windows may be shifted by several samples to speed
up the calculations. This procedure creates for each subject a vector with the number of
N components estimating average power in different frequency ranges. We have found
that these averages stabilize after about 60 seconds. Average power maps are relatively
stable for each individual but do not contain any information about the dynamics or
frequency. This kind of information may be added by dividing the whole frequency
range of the STFT spectra into typical frequency bands (9, 6, a, B, v) or by focusing on
several narrow few-Hz bands to capture power peaks that arise at the same time in
several channels, reflecting synchronized processes.

The avPP analysis can be extended in many ways. The global EEG signal at a given
time moment Pm(t) may be decomposed using the basis calculated by asymptotic spatial
averaging. The cumulative average power values and variances were calculated sepa-
rately for each electrode for the broadband spectrum (0.5-60 Hz). After calculation of
the STFT spectra, it is trivial to calculate the average power for classical EEG bands:
delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-60 Hz).
This will create vectors with 5x N components. We have also calculated power in a
narrow 1Hz band to see which frequencies lead to the most characteristic patterns, cre-
ating vectors with 60x Nc components. Attractor states may be defined by monitoring
the time windows in which the power decreases below a certain threshold. We can
combine that with our approach to recurrence quantification analysis [13], estimating
distances to our asymptotic distributions instead of self-similarity. To capture the flex-
ibility of brain subnetworks [14] we can look at various functional correlation measures
and average them in longer recordings.

3 Dataset and related papers

Diagnosis of schizophrenia based on EEG has been a popular subject, with over 40
methods mentioned in the summary by Khare, Bajaj, and Acharya [15]. They have
tested their SchizoNET approach on EEG recordings of 45 adolescent boys (10-14
years old) with schizophrenia (schizotypical and schizoaffective disorders), described
in Borisov et al. paper [5]. The control group of similar age consisted of 39 healthy
schoolboys. EEG recordings were made in a wakeful, relaxed state with the eyes closed,



using 16 electrodes placed in the standard 10-20 system at O1, 02, P3, P4, Pz, T5, T6,
C3,C4,Cz,T3, T4, F3, F4,F7,and F8. The sampling rate was 128 Hz, and only artifact-
free EEG segments of the recordings were used for analysis.

Analysis performed in the original paper [5] was based on the index of structural
synchrony (ISS), the synchronization frequency between 120 pairs of electrodes during
quasi-stationary segments of the EEG signals, free from random coincidences. Result-
ing graphs showing connections between pairs of electrodes with high 1SS have a little
chance of being stable. We have made a similar investigation and in each cross-valida-
tion fold such graphs differ significantly. The overall conclusion from this paper is that
schizophrenics have less synchronicity between electrodes that are far apart, but more
for electrodes that are adjacent.

This data has been analyzed in many other papers, therefore we have a comparison
with different methods of analysis. Several convolutional neural networks were applied
to this data. SchizoNET [15] combined the Margenau—Hill time-frequency distribution
(MH-TFD) and convolutional neural network (CNN) with only five layers. The time-
frequency amplitude is converted to two-dimensional plots and fed as an image to the
CNN model. Using 5-fold cross-validation (5 CV) this model achieved a very high
accuracy of 97.4%. Phang et al. [16] developed a deep convolutional neural network
(CNN) framework for the classification of electroencephalogram (EEG)-derived brain
connectome in schizophrenia. They have used a combination of 3 methods: connectiv-
ity features based on a vector autoregressive model, partial directed coherence, and
complex network measures of network topology. Different fusion strategies with a par-
allel ensemble of 1D and 2D CNNs to integrate the features from various domains, and
analysis of dynamic brain connectivity using the recurrent neural networks. In the
5xCV tests, their fusion-based models CNNs outperform the SVM classifier (90.4%
accuracy), achieving the highest accuracy of 91.7+4.6%. These models use full con-
nectivity matrices in 5 bands, requiring vectors with 1280 components, and the full
fusion models use vectors with 2730 dimensions. Aslan and Akin [17] converted EEG
signals to 2D images using continuous wavelet transform and trained VGG16 deep
learning network architecture on such images. They created vectors from 5-second se-
quences, dimension 10240, and transformed them into 224 x 224 scalograms. They
claim an accuracy of 98% but have used a single partition of 20-80%, so it cannot be
compared to cross-validation. Shen and colleagues [7] used dynamic functional con-
nectivity analysis and 3D deep convolutional neural networks. A time-frequency do-
main functional connectivity analysis was used to extract the features in the alpha band
only with a cross-mutual information algorithm. This gave 97.7+1.2% accuracy and
some differences between the connectivity of temporal lobe areas in both the right and
left side of the brain, between the schizophrenia and control subjects.

All these results are almost perfect, but none of these methods have the chance to be
useful in a clinical setting. First, the “black box™ approach provides no insight into the
brain processes that may characterize schizophrenia. Second, feature selection on the
whole dataset leads to high accuracy that significantly drops when selection is done
only on the training partition. This is illustrated below.



4 Results

4.1  CNN calculations.

We have tested a typical convolutional neural network, considering the data from
each subject as an image. The images were created by building a NcxN¢ distance matrix
from the Nc=16 channel data, where the (i,j) pixel represents distance d(X;, X;j). Here X;
is a Nc-dimensional vector with the value of each EEG channel at time instant i=1,.., N,
the number of EEG samples N=7680 (128Hzx60s), and the distance function was Eu-
clidean. This matrix was subsampled to a final size of 240%240 pixels. An example of
such a matrix can be seen in Fig. 1. Our CNN had 3 convolutional layers, with 16 3x3
filters in the first layer, 32 3x3 filters in the second and 64 3x3 filters in the third con-
volutional layer, a ReLU layer after all convolutional layers, and two fully connected
maxpooling layers after the ReLU layers of the convolutional blocks. Batch normaliza-
tion layers are after the second and third convolutional layers, the output layer is fol-
lowed by softmax nodes, with a total of 945170 parameters. This network was trained
with a dropout of 0.25 before the first fully connected layer, using the Adadelta opti-
mizer, for 200 epochs, and the best cross-entropy validation loss weights were used for
testing. No information about the test partition has been used at any stage of calcula-
tions.
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Fig. 1. An example of a subsampled distance matrix used in the experiments with CNNs.

5-fold cross-validation gave 79.84+5.9% average accuracy. This is more realistic than
accuracies that are close to 100%. Such impressive results may come from a common
error, performing feature selection on the whole dataset instead of only on the training
partition within cross-validation folds. Sophisticated neural models can achieve high
classification accuracy, but do not help to understand EEG data. The use of fMRI data
for schizophrenia diagnosis seems to be about as accurate as EEG, for example, a model
for automated schizophrenia diagnosis with fMRI features had accuracy below 80% in
all cases [18]. Unfortunately, we do not have EEG and fMRI data for the same group
of patients, therefore direct comparison of the two approaches is impossible.



Classification results presented below were made using the linear SVM method im-
plemented in a Scikit-learn Python library, with the stratified 5-fold cross-validation.
One advantage of such an approach is that the model is simple, and we can identify
combinations of electrodes and frequency bands providing specific spatial information
about localized oscillatory brain activity.

4.2  Microstate-based calculations

We have performed calculations with up to 20 microstates, generating features for the
LSVM classifier. Detecting a large number of microstates should create smaller and
more specific clusters. However, microstate algorithms cluster many states around the
peak global power, so all maps resemble variations on similar patterns (Fig. 2). Addi-
tional microstates do not show complex patterns that could represent the activation of
large-scale brain networks. The results of the classification are in Table 1 and Fig. 3.

Fig. 2. Maps of 16 microstates classes from calculations on the whole dataset.

Results of classification based on 14 to 20 microstate features derived from the whole
dataset were surprisingly high, reaching 100% in the 5-fold cross-validation. For these
calculations, we used a common set of features selected before training the LSVM clas-
sifier on the whole dataset, using recursive feature elimination with cross-validation
(RFECV). With a small dataset and a large number of parameters (the number of tran-
sition probabilities is equal to the square of the number of microstates), we can always
find some parameters that distinguish a single case from all others. Feature selection
within cross-validation done separately on the training partition will not discover such
prominent features, and therefore untypical cases are misclassified.

Using a common set of features 100% accuracy is reached for 14 or more mi-
crostates, with the variance of results quickly decreasing to zero. Most useful features
are based on transition probabilities (Fig. 4), showing the importance of dynamics. Per-
forming feature selection within the training partition gives much worse results. Accu-
racy reaches 83.5+13,7% for 16 microstates, using 185 features. Almost as high accu-
racy 82.1£15.2% is reached for 12 microstates with only six features. Among the addi-
tional 179 features, some are useful only for a single, very specific case (a single test
error contributes about 6% to accuracy). Cross-validation may put such cases in the test
partition, leading to a large variation in the number of errors.

To find unusual cases in the schizophrenia dataset we have performed the leave-one-
out tests, checking which cases/features are responsible for errors. For 16 microstates
accuracy grows to 86.8%, with about 2-3 cases misclassified. Reliable classifiers should



estimate the confidence of their predictions distinguishing a group of typical cases for
a given class and designating all others for more detailed evaluation.
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Fig. 3. 5xCV accuracy dependence on the number of microstates; left - recursive feature selec-
tion on all data; right - feature selection performed separately within each training fold.
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Fig. 4. Most important transition probabilities between 16 microstates used as features for the
LSVM classifier that works with 100% accuracy.



Microstates Selection on all data Selection on training only
N states | Type N dim | AcctVar% | Type Ndim | AcctVar %
4 TAAHC 4 78.7£17.2 TAAHC 4 76.1+18.6
6 TAAHC 52 78.5+17.7 TAAHC 52 77.4+17.7
8 TAAHC 17 96.5+3.4 TAAHC 17 72.7+20.2
10 TAAHC 93 89.4+9.4 TAAHC 93 76.3£18.5
12 K-means 55 100 K-means 55 78.7+17.5
14 K-means 90 100 K-means 90 81.0+15.9
16 TAAHC 42 100 K-means 17 84.6+£13.0
18 TAAHC 281 91.6+£7.8 TAAHC 281 82.2+14.0
20 TAAHC 221 98.8+1.2 TAAHC 221 83.4+14.3

Table 1. Classification results using parameters derived from microstates.

4.3  Asymptotic spatial power distribution

For the purpose of the classification, the last cumulative average power values (follow-
ing the summation over the whole signal; in our case, 60 seconds) and the correspond-
ing variances were used. They were normalized within the frequency range for each
subject separately and used for the feature matrix. We have tested several combinations
of feature sets, selecting values separately for different bands (see Table 2).

Additionally, to exclude irrelevant features, we have used a recursive feature elimi-
nation technique with 5-fold cross-validation taken from the Scikit-learn function. Dur-
ing cross-validation, the algorithm performs step-wise removal of data components
based on the value of the SVM coefficients. We also present results obtained using
recursive feature selection on the whole dataset and selection within the training parti-
tion in 5XCV.

A summary of the best classification results is presented in Table 2. The best results
are obtained for the feature set consisting of cumulative average power values using the
delta band in combination with theta, alpha, and gamma. Good results are also achieved
for theta combined with beta bands taken together and reduced to 42 dimensions fol-
lowing the recursive feature elimination (RFECV).

Power plots in Fig. 5 are averaged over the five frequency bands. Power distribution
patterns differ for each band and have a more complex structure than the microstates.
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Compared to the control group, schizophrenia patients show larger regions of high ac-
tivity, as well as lower activity in the left and higher in the right temporal lobe. This
confirms the observations reported by Shen et al. [7]. The number of features was op-
timized and fixed for all folds, using the RFECV scikit function.

EEG bands Selection on all data Selection on training
N dim AcctVar % | N dim AcctVar %

broadband 10 72.5+20.6 10 68.0£22.8
B+y 3 73.8+19.6 3 72.7£20.5
0+pB 23 74.9+18.4 23 65.4423.0
o+0 19 68.9+21.0 19 65.6+23.6
6+6+a 19 90.5+8.6 19 76.2£19.2
O+0+o+P 21 95.2+4.6 21 78.5+17.8
O+0+o+p+y 71 79.5+15.5 71 79.8+17.1

Table 2. Summary of classification results for features obtained from asymptotic spatial averag-
ing in selected bands. The window size was 256 samples.

a)

9: 0-4 Hz 0:4-8 Hz a: 8-12 Hz B: 12-30 Hz v: 30-60 Hz broadband: 0-60 Hz
b) =3 =2 =] 0 1 2 3
5: 0-4 Hz 0:4-8 Hz «: 8-12 Hz p: 12-30 Hz v: 30-60 Hz broadband: 0-60 Hz

Fig. 5. Example of asymptotic power distributions. a) S27w1 schizophrenia, b)719w1 healthy.
The electrodes and frequency bands that contribute the most to the theta-beta SVM

classification based on the maximum absolute values of the weights are shown below.
Starting with the most important combinations, the top 10 include:

T4da |F8a |P3B |C3B [O2a Pza |F8O |P46 | T46 |[T36
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5 Discussion

The dynamics of the brain states is characterized by a sequence of metastable states.
The key problem is to find the optimal complexity of representation, capturing suffi-
cient information about spatial patterns and their dynamics. We have introduced here
frequency-dependent asymptotic spatial averaging, creating reference patterns more
complex than those provided by microstates. In our tests, these spatial states show high
discriminatory power. Splitting and optimizing frequency bands, selecting chan-
nels/sources and specific bands, and adding statistical information about the dynamics
of these states, in the same way as done in the microstate analysis, should improve the
results further. Microstates maximize global explained variance, creating a few maps
(usually 4 to 10). Michel and Koenig [9] have summarized microstate parameter
changes (Dur, Occ, Cov, GEV) calculated for subjects suffering from neuropsychiatric
diseases. This is very crude and not sufficient for precise diagnosis. Here, we have per-
formed microstate analysis with up to 20 states, focusing on generating features useful
for classification. Transition probabilities between microstates (Fig. 4) provide espe-
cially useful features. Selecting a subset of these features on the whole dataset gives a
set of features that give 100% correct classification using linear SVM in 5-fold cross-
validation. Although no information about the test partition is used in the classifier
training, such selection strictly on the training data strongly influences the results even
in the leave-one-out procedure.

Small EEG data can always contain a few unique cases. All papers should clearly
state whether feature selection has been performed separately in each cross-validation
partition, or on the whole data. Rahman and colleagues [19] proposed an approach for
the analysis of a small complex fMRI data called MILC (Mutual Information Local to
the whole Context). A self-supervised pre-training scheme captured potentially relevant
information from large data sets. This approach is similar to foundational models, pre-
trained on large datasets to enable context embedding and trained on the local data. We
see a similar phenomenon here but lack sufficiently large EEG data collections to create
such foundational models.

Recurrence analysis is very well suited to the analysis of time series. Further work
is needed to understand the relationship between microstates, recurrence states and their
transitions, spectral fingerprints, average power plots, decomposition of signals into
template models, and flexibility of transitions between different large-scale network
states, graphs of transitions between ROIs, motifs derived from hidden Markov models,
and subnetworks. All these issues require deeper investigation.
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