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1

Preface

The purpose of these notes is to give some simple tools and pictures to physicists and °
chemists working on the many-body problem. Abstract thinking and seeing have much
in common — we say “I see” meaning “I understand”, for example. Most of us prefer
to have a picture of an abstract object. The remarkable popularity of the Feynman
diagrams, and other diagrammatic approaches to many-body problem derived thereof,
may be partially due to this preference. Yet, paradoxically, the concept of a linear space,
as fundamental to quantum physics as it is, has never been cast in a graphiéal form.
We know that

is a high—order contribution to a two-particle scattering process (this one invented by
Cvitanovi¢(1984)) corresponding to a complicated matrix element. The lines in such
diagrams are labeled by indices of single-particle states. When things get complicated
at this level it should be good to take a global view from the perspective of the whole
many—-particle space. But how to visualize the space of all many—particle states ?
Methods of such visualization or graphical representation of the spaces of interest to
physicists and chemists are the main topic of this work.

Notes on this subject have now been piling up on my desk for a couple of years
and, although I have already managed to publish a few things about graphical repre-
sentations, I have gradually realized that the scope of such a work is much broader
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than my humble abilities allow. I received a formal training in physics and made my
PhD in quantum chemistry. Working on applications of the symmetric group theory to
the configuration interaction method I stumbled, motivated by Shavitt’s work (1977),
upon a graphical description of the configuration space. The physical meaning of Sha-
vitt’s graph was at that time unclear to most of the scientists who used it, the reason
being a detoured way of approaching the problem via the unitary group theory. Years
later I began to understand how useful the concept of a graphical representation of
a space really is and how rich are its connections with the well-established branches
of mathematics, like group theory, the theory of partitions, graph theory, integer pro-
gramming, operations research or the theory of natural numbers. Thus, leaving the safe
waters of my own speciality I have ventured into the unknown oceans of knowledge,
discovering a number of fascinating books besides quite a few journals the existence of
which I had never suspected. I have looked through shelves of books on mathematical
subjects related to quantum mechanics, but even those books that refer directly to the
bases of Hilbert or Banach tensor spaces (cf Singer 1970) fail to provide any geometrical
pictures or to make connections with the graph theory or the group theory, while the
number theory fits there as well as a third leg to trousers. Yet many examples may
be found where Diophantine problems and graphical methods are related in a natural
way, as with Dynkin diagrams in group-theoretical methods applied to unified models
(cf Gilmore 1974; Slansky 1981). As Primas (1981) writes: “The most important task
of contemporary theoretical chemistry is to stimulate the mutual understanding of the
various branches of chemistry and its neighboring sciences.”

On a piece of paper glued to the wall of an office in the Max—Planck-Institute for
Astrophysics in Garching b. Miinchen I have found this quotation from T.S. Eliot’s
poem “The Rock”

All man are ready to invest their money
But most expect dividends

I say to you: Make perfect your will

I say: take no thought of the harvest,
But only of proper sowing.

Being a physicist of a saturation time (read: having no one to work for me) I have
thus decided to limit the scope of the present work and leave some things for others, more
mathematically gifted than myself, if they would find the subject interesting. In these
notes I present simple tools, giving both the language and the methods of calculation,
i.e. graphical representation of certain model spaces useful in many-body problem,
plus the methods of matrix element calculation. This in itself took about 200 pages,
so I decided to publish it separately as the first volume, leaving the mathematically
more complicated Part III, as well as Part IV dealing with applications, for the second
volume. My intention was to keep the whole work self-contained, in the sense that
only a basic knowledge of mathematics is assumed and, although the list of references
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is rather long, the reader should still be able to understand the text without digging
through this literature.

Finally, if the reader, used to the impersonal style of most scientific papers, finds the
personal tone of these notes rather distasteful, I should say that I have looked into my
family tree searching in vain for any Polish king that would justify the use of a plural

form “we”.
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Introduction

In which I am trying to explain why have I
done it, what have I done, and what it s for.

Many-body experts like to start from the one-particle approximation. Even when
geminals or group functions are used they are ultimately expanded in the one—particle
basis (Wilson 1984). Computational difficulties with the explicitly correlated wavefunc-
tions prevented the use of these methods for all but a few-electron systems (Handy
1978), although there are still some, who have not buried all their hopes, and whose
results are promising (cf Jankowski and Malinowski 1980; Jeziorski et al 1984). Not-
withstanding their hopes the majority votes for one—particle approximation, because it
is fundamental to our intuitions and capable of high accuracy (cf Handy 1978).

Many-body equations, whatever is our choice, take place in the many-particle Hil-
bert space X¥. The experts are usually so eager to solve their equations that they tend to
forget that. This space is created from n-dimensional one—particle space Vn, = {|¢;)}_;
called the orbital space and two-dimensional one-particle spin space V; = {|a),|8)}.
To be a little more general let’s assume that we have a set of primitive objects (like
orbital or geminal states) that are used in construction of many-particle states. It is
convenient to formulate equations in a formalism that does not depend on the num-
ber of particles in the system nor on the size of the orbital space, i.e. to work in the
Fock space (Kutzelnigg 1984). Finally however both the number of particles N and the
number of orbitals n have to be specified, no matter what method we use. The full
Hilbert space )(,{V has a very large dimension dim )(;iv = (3{,’) In practice we are forced
to truncate this space severely; managable dimensions for the present—day computers

are of the order of 10°® basis states. This truncated space )7,]:’ - )(,{V is a part of the
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physical model of our system, therefore it is called a model space.* The model space, as
any other mathematical structure build from simpler objects, has a particular architec-
ture. Primitive objects like orbital and spin states correspond here to building blocks
or bricks that come only in a few sizes, while the space itself corresponds to a building.
The architecture of a model Hilbert space may be visualized using simple graphs. We
certainly do not want to inspect individual basis states if there are thousands of them,
but we would like to see the relations between these states, recognize certain useful cl-
asses of states and develop some intuitions to tell the solid constructions (spaces giving
good approximations) from the rickety ones (spaces giving poor approximations). The
concept of a space structure is here implicit and I will use the word ‘structure’ in the
same sense as it is used in any architectural context. In case of architectural objects
we can also talk about shape. The concept of shape may not be precisely defined for
a space, because there usually exist many different graphical representations that are
topologically equivalent and thus preserve the structure of the space. However, if we fix
the rules of a graphical representation and decide how to picture the primitive states
we may talk about different shapes of spaces, and the shape will obviously depend on
what kind of model spaces we are using and what kind of symmetries the basis states
posses.

It is undoubtedly nice to see the structure of a space, but is it useful ? Summarizing
the prospects of molecular quantum mechanics McWeeny and Pickup (1980) write: “ab
initto molecular calculations of ‘chemical’ accuracy, are going to be dominated more
and more by the development of computers and highly efficient algorithms”. The same
is true in other branches of many-body theory (cf Wilson 1982), therefore computa-
tional aspects should not be ignored. Graphical representation should allow us to see
the structure of a space and to teach the computer how to make use of this structure.
Moreover the graphs should be constructed in such a way that would allow all required
matrix elements to be obtained directly from the graphs, without recourse to the al-
gebraic manipulations with the many-particle functions. Thus we come to the next
concept — of a proper label for a state. Designation like [2P, Mg = %,ML =1) is not a
proper label because it doesn’t say anything about the construction of this state from
primitives or one—particle states. Weyl tableaux or Gelfand patterns may serve as an
example of the proper labels. A properly constructed graph § should contain enough
information about the basis states of many—particle space to facilitate the mapping:

§: Ak — AG)

of a differential or integral operator 4 acting in the infinite-dimensional space X to
its matrix representative A in the model space ¥}¥. Biedenharn and Van Dam (1965)
write “ One of the basic problems, if not the basic problem in spectroscopy, both atomic

*In many-body perturbation theory the space of zeroth—order functions is sometimes called the model

space; this is obviously not what is meant here.



6 2. Introduction

and nuclear, is the construction of antisymmetric N-particle wave functions from the
(degenerate) states of a given energy shell.” The construction of such a wave functions
is precisely what I hope to avoid, replacing it by graphical labels and graphical rules
of matrix element evaluation. The theory should be simple, basically no more than an
exercise in labeling of the many-particle states by a graphical means.

What kind of spaces can one visualize graphically ? Any kind of tensor spaces, i.e.
all those with the bases being combinations of products of primitive states. Such states
are well represented by Young tableaux or Gelfand patterns (cf Barut and Raczka
1980; Hammermesh 1962). One could say that any carrier space of GL(n) can be
represented in such way, but throughout this work I will try to avoid explicit use of a
complicated mathematics, in particular the use of symmetric or unitary group theory.
In those passages, where group—theoretical explanations are so natural that other seem
clumsy, I have placed a warning sign GT to let the uninitiated skip them — material
included there is by no means necessary to understand the rest of the text. I am very
well aware that one can almost always dress the methodological developments in a now

distinguished language of group theory. Condon and Shortley (1935) relate the following
story:

When Dirac visited Princeton in 1928 he gave a seminar report on his paper
showing the connection of the exchange energy with the spin variables of the
electrons. In discussion following the report, Weyl protested that Dirac has said
that he would derive the results without the use of group theory but, as Weyl
said, all of Dirac’s arguments were really applications of group theory. Dirac
replied, “I said I would obtain the results without any previous knowledge of
group theory”.

This anecdote* ilustrates very well the sense in which group theory is not used here.
Personally I like group theory, especially when it is presented in the not-so—formal
way (cf Lipkin 1965; Cvitanovié 1984), and I do not manage to get along completely
without it. But, as Condon and Shortley (1935) write in their book: “Hence, if we can
minimize the amount of new mathemathics he (i.e. the physicist) must learn in order
to penetrate a new field we do him a real service”. I am in favour of new mathematics;
Wormer (1975) has rightly pointed that there always was a resistance to accept new
mathematical ideas, even such ‘obvious’ (for us now) concepts like negative numbers
or the use of letters in equations. There are cases where we certainly need powerful
mathematical techniques (cf Primas 1980). Condon himself turned to group theory in
his last book (Condon and Odabasi 1980). But, to quote from his first book again “
the new developments bring with them so many new things to be learned that it seems
inadvisable to add this additional burden to the load”. In some respects, because of this
additional burden, we seem to fall back in our understanding of fundamental concepts,

*I am indebt to Prof. R. McWeeny for telling me this anecdote.
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as a quick comparison between say Condon and Shortley’s book and some of the latest
quantum chemistry textbooks, will immediately show.

Symmetries, existing in the physical system we want to describe, are usually reflec-
ted in the construction and properties of the states of this system. Eigenstates of an
operator O are called O-adapted states and the space of these states O-adapted space.
Frequently construction of such states is too complicated to be worth the trouble; simp-
ler basis sets are used instead and the space enlarged to ensure that the subspace of
desired symmetry is included in it. For example, we may easily construct i}z——a.dapted
states but the construction of L.2- adapted states is much more complicated. The sta-
tes included in model space ,f(,]zv are thus selected first on the basis of their symmetry.
Furthner selection of basis states is based on their importance, frequently estimated by
the perturbation theory; contrary to the selection by symmetry this does not compli-
cate the construction of many-particle states. Estimates of importance are either used
globally (this is sometimes called preselection, cf Shavitt 1977) or locally. Taking all
two—particle, two—hole states relative to some Fermi vacuum is a global selection. Local
selections demand checking individual states and admitting to ﬁ,{v only those that give a
contribution larger than certain threshold. Global selection leads to spaces with certain
regular structure while local selection in general destroys it. As I will show in Part IV of
this work the structure of a model space ¥, is reflected in the structure of the matrices
corresponding to the operators acting in this space. Although graphical representation
is very useful for calculation of matrix elements no matter how the selection is done it is
with the global selection and the regular structure of the corresponding matrices where
the biggest gains should be expected.

Techniques of a graphical representation of many-particle basis states adapted to
different symmetry operators should be helpful in case of a complicated fermion and
boson systems, although here such ambitious applications are not presented. The for-
mulas of many-body perturbation theory are very compact when many—particle states
are used, and get very complicated when spin—adapted formalism is coupled with dia-
gramatic reduction to one-particle level (El Baz and Castel 1972). Why do I hope that
graphical representation of model spaces (or GRMS for short) will be effective as a com-
putational method ? GRMS may be used just for visualization, i.e. the classification
and labeling of many-particle states used in traditional many-body methods, but such
a representation fosters a new way of thinking about the organization of computations.
To some degree this is already evident from the succes of the unitary group approach. In
applied quantum mechanics the unitary group approach (UGA) to the many—electron
correlation problem is certainly one of the more popular subjects of research in recent
years (cf Paldus 1976; Harter and Patterson 1976; Drake and Schlesinger 1977; Down-
ward and Robb 1977; Shavitt 1977-1983; Paldus and Boyle 1980; Hinze 1981; Kent et
al 1981; Payne 1982; Robb and Niazi 1984; Paldus and Wormer 1986). There are good
reasons for this: the programs, based on UGA ideas, proved to be much more effective
than the conventional ones (Siegbahn 1979,1980; Brooks et al 1979,1980; Lischka et al
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1981; Saunders and van Lenthe 1983). Configuration interaction (CI) calculations with
over one million terms (Saxe et al 1982; Diamond et al 1984) or potential curves for
molecules like Cry in 1123’ state (Roos et al 1982) calculated with 220000 functions are
without doubt remarkable achievements, but the applications did not stopped with CI.
The unitary group approach was succesfully applied to the MCSCF method (Brooks et
al 1980b; Shephard et al 1980,1982) complete active space SCF (Roos 1980; Roos et al
1980; Siegbahn et al 1980,1981), coupled electron pair approximation (CEPA) (Lischka
1982), open-shell electron propagator method (Born and Shavitt 1982), energy gradi-
ent calculations (Brooks et al 1980c) and crystal field theory (Zhenyi 1983). There are
hopes for many other applications as well (Shavitt 1983b).

The theory that lies behind all these applications does not look simple to a profane
eye. Pages and pages of coefficients and complicated diagrams are reported in all pa-
pers containing derivations of UGA based formulas (cf Payne 1982 or Robb and Niazi
1984). One has to admire the amount of work that Paldus had to perform writing his
monumental paper (Paldus 1976) that has turned the attention of many scientists to the
unitary group theory. However, despite the beauty of its mathematics one is tempted’
to ask — is it possible to find some shortcuts that lead to the same results in a more
direct and simple way ?

I would like to argue here that the real power of this new computational methods
lies not so much in the efficiency of matrix element calculations, as claimed by Paldus
(1981), but rather in the new organisation of computations, fostered by the graphical
representation of the sZ—adapted basis, due to Shavitt (1977). The pre-graphical appli-
cations of UGA were not succesful (Robb and Hegarty 1978); however, once the insight
from the graphical representation was gained it was possible to avoid the explicit use of
graphs in some cases (Saunders and van Lenthe 1983). Thus in the graphical unitary
group approach (GUGA) the emphasis should be placed rather on ‘G’ for ‘graphical’
than ‘U’ for ‘unitary’. UGA results concerning matrix elements are easily obtained
by simpler and at the same time more general means. Group theory need not to be
mentioned in the derivation, except for comparison with the previous approaches. Sha-
vitt’s graph, introduced at first as a representation of a table of distinct rows in Paldus
tableaux (Shavitt 1977) is now being slowly recognized as a representation of a many-
electron model space (Shavitt 1983a), although the Gelfand basis (Gelfand and Tsetlin
1950; Barut and Raczka 1980) and A,B,C tableaux (Paldus 1976) are still presented as
a prerequisite for understanding of the graph (cf Esser 1984).

Shavitt’s graph has inspired us to develop the symmetric group graphical approach
(SGGA) (Duch and Karwowski 1981-1985). Both GUGA and SGGA may be treated
as a special cases of the graphical representation of model spaces. It should be empha-
sized that the graphs used in these approaches are rather different from other types
of graphs used in physics. They do not represent chemical structures, interactions or
formulae, but give a global description of many—particle model spaces. They are suc-
cessors of the branching diagram (van Vleck 1932) describing the structure of a spin
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space in a similar way as the SGA graph describes the structure of the space of orbital
configurations. The graphs used in UGA and SGA are in fact different projections of
the same three-dimensional graph describing S2-adapted states. I shall explore other
graphical representations of these states as well as states adapted to éz, i;z, 12, J? and
spatial symmetry point group operators, and point out some connections of this theory
to well-established branches of mathematics.

First part of this book deals with the architecture of many—particle model spaces,
i.e. with the labeling and classification of their basis states. In the second part operators
acting in the model space are introduced and techniques of deriving matrix elements
straight from the graph are elaborated. In the finite-dimensional spaces of states built
from primitive objects every operator is equivalent to a polynomial in the shift opera-
tors, i.e. operators that replace one primitive object by another. An elegant theory of
matrix element calculations that fits very well to a graphical representation of model
spaces is based on the use of these operators, called in the context of UGA ‘generators of
the unitary group’. The celebrated result of UGA (Paldus 1981) — segmentation of the
two—generator product matrix elements — is obtained as an example of this approach.
In the second volume matrix elements between states belonging to the degenerate re-
presentations of the point groups and matrix elements between (iz,§2) eigenstates are
considered. The structure of matrices representing operators acting in model spaces is
elucidated in the last part. The insight, gained from understanding of this structure, is
applied to various methods of solution of the Schrédinger equation. Experience gathered
with computer programs dealing with graphs is also presented in the second volume.
So far applications of group-theoretical approaches have influenced the techniques of
computations rather than bringing with them new developments in the methods. It is
my hope that investigation of the structure of matrix representations of operators may
lead not only to computational efficiency but also to new methods. The effect of an
extension of orbital basis, for some operators and some types of graphs, should have a
predictable influence on the eigenvalues of matrices corresponding to these operators.
Is it possible to obtain the eigenvalues in an infinite orbital basis set in this way, i.e. to
solve the problem exactly ? Or to formulate the perturbation theory to account for an
extension of the orbital basis ? These are new types of questions that can be stated in
the context of GRMS and that conclude this work.
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